Carbohydrate Recognition by the Fimbrial Adhesion Systems of *Escherichia coli*

191st Meeting of the Belgian Society for Biochemistry and Molecular Biology
2-Dec-2005

Lieven Buts
Vrije Universiteit Brussel
Protein-Carbohydrate Binding Mediates Biological Recognition

- **Carbohydrates** are highly flexible molecules with a complex stereochemistry and a high density of functional groups; this makes them extremely suitable as information carriers.
- The information is encoded by the genome in an indirect way, subject to complex regulation.
- **Lectins** are proteins of non-immune origin that reversibly bind specific carbohydrate structures, without modifying the covalent structure of their ligands.
- Biological recognition processes range from **microbial infection** over intracellular **protein trafficking** to the **differentiation** of cells and tissues in higher organisms.
Carbohydrates as Labels

Blood stream

Site of infection

Rolling (weak adhesion)

Strong adhesion and tissue invasion

Intact, healthy tissue

Carbohydrates

- E-selectin ligands
- L-selectin ligands

Lectins

- E-selectin
- L-selectin
Carbohydrates as Liabilities

Influenza virus particle

Haemagglutinin

Respiratory tract epithelium
Fimbriae or pili bear sugar-binding proteins (adhesins) along their length or at their tips and are involved in the attachment of the bacteria to substrates and host cells; they determine host range and tissue tropism.
Adhesion Systems

Chaperone/usher pathway
Type 1 P-type F17
F18 F4/K88 F5/K99

Escherichia coli, Salmonella, ...

Nucleation/precipitation pathway
Thin aggregative pili
Curli

General secretion pathway
Type IV pili
Pseudomonas aeruginosa
Vibrio cholerae

Outer membrane adhesins
Neisseria meningitidis
Moraxella catarrhalis

Invasion systems
CS-1 AIDA

Adhesins of Gram-positive bacteria
F17 Fimbriae

- F17-G: adhesin with GlcNAc specificity
- F17 operon: only 4 genes
- Found in enterotoxigenic Escherichia coli (ETEC) strains infecting livestock

Diagram:
- Fimbria (flexible)
- Usher
- Outer membrane
- Chaperone
The Adhesin has Two Domains

- Lectin domain
- Short linker
- Pilin domain
- Complete Ig fold
The Adhesin has Two Domains

- **Lectin domain**
 - short linker

- **Pilin domain**
 - **Structural pilin subunit**
 - missing strand in incomplete Ig fold

- **N-terminal extension**
The Adhesin has Two Domains

Pilin domain

Lectin domain

short linker

missing strand in incomplete Ig fold

N-terminal extension
The Adhesin has Two Domains

- **Lectin domain**
- **Pilin domain**
- **N-terminal extension**
- **Short linker**

- C
- N
The Adhesin has Two Domains

- Lectin domain
- short linker
F17 Fimbriae

F17-G: adhesin with GlcNAc specificity

F17 operon: only 4 genes

Found in enterotoxigenic Escherichia coli (ETEC) strains infecting livestock
A Specific Chaperone Assists Folding and Assembly

Donor strand complementation

Donor strand exchange
An X-Ray Snapshot

Zavialov et al., Cell, 113; 587-596.
Type 1 Pili

- FimH adhesin
- Adapters
- Pilus rod (rigid)
- Outer membrane
- Usher
- Chaperone

The fim operon is found in human uropathogenic *Escherichia coli* (UPEC) strains. FimH adhesin has a basic specificity for mannose.
Therapeutic Strategies

- General antibiotics
 - Resistance can arise if used inappropriately
 - Persistent and recurrent infections can lead to very long treatment times

- Interfering with pilus assembly
 - “Pilicides” specifically target chaperone function

- Interfering with adhesion
 - Carbohydrate-based binding site blockers target the adhesin-receptor interaction

- Optimal approach depends on circumstances
- Potential for complementarity
F17G Exhibits Significant Natural Variation

F17a-G, F17d-G: bovine enterotoxigenic *E. coli* (ETEC) strains
F17b-G: *E. coli* strains isolated from septicemic calves and lambs
F17c-G: associated with bovine diarrhea or septicemia and with lambs showing nephrosis
F17e-G (*E. coli* strain CK210)
F17f-G (*E. coli* CK377 strain): expressed by non-enterotoxigenic *E. coli* isolated from lambs and goat kids
G fimbriae from human uropathogenic *E. coli* strains were found to be identical in amino acid sequence to F17c fimbriae
Crystal Structure of the F17a-G Lectin Domain

2-acetamido-2-deoxy-D-glucopyranose

methyl 2-acetamido-2-deoxy-1-seleno-β-D-glucopyranoside

(Oscarson lab)
Crystal Packing Variation
Crystal Quality Variation

<table>
<thead>
<tr>
<th></th>
<th>Time to obtain crystals</th>
<th>Maximum resolution</th>
<th>Suitability for soaking with new ligands</th>
</tr>
</thead>
<tbody>
<tr>
<td>F17aG</td>
<td>Minutes</td>
<td>1.1 Å</td>
<td>+</td>
</tr>
<tr>
<td>F17bG</td>
<td>Days</td>
<td>2.1 Å</td>
<td>++</td>
</tr>
<tr>
<td>F17cG</td>
<td>Days</td>
<td>1.8 Å</td>
<td>-</td>
</tr>
<tr>
<td>F17dG</td>
<td>No crystals obtained</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>F17eG</td>
<td>Days</td>
<td>2.4 Å</td>
<td>--</td>
</tr>
<tr>
<td>F17fG</td>
<td>Days</td>
<td>1.5 Å</td>
<td>-</td>
</tr>
</tbody>
</table>

Prokaryotic genetic diversity is a source of complications and opportunities.
Carbohydrate Complexes

GlcNAc(β1-3)Gal

β-methyl-paranitrophényl-GlcNAC
Surface Plasmon Resonance Binding Experiments
Surface Plasmon Resonance Binding Experiments

Glc\(\beta\)-1-OMe

Glc\(\alpha\)-1-OMe
Surface Plasmon Resonance Binding Experiments

<table>
<thead>
<tr>
<th>K_a (1/mM)</th>
<th>F17a-G</th>
<th>F17d-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAG</td>
<td>0.85 ± 0.09</td>
<td>1.00 ± 0.21</td>
</tr>
<tr>
<td>NAG_2</td>
<td>1.09 ± 0.04</td>
<td>0.97 ± 0.08</td>
</tr>
<tr>
<td>NAG_3</td>
<td>1.02 ± 0.08</td>
<td>1.33 ± 0.11</td>
</tr>
<tr>
<td>NAG_4</td>
<td>1.62 ± 0.08</td>
<td>1.92 ± 0.11</td>
</tr>
<tr>
<td>β-Me-SeNAG</td>
<td>4.58 ± 0.17</td>
<td>4.59 ± 0.56</td>
</tr>
<tr>
<td>NAGβ1-2Man</td>
<td>2.78 ± 0.10</td>
<td>2.99 ± 0.14</td>
</tr>
<tr>
<td>tri</td>
<td>0.64 ± 0.05</td>
<td>0.55 ± 0.08</td>
</tr>
<tr>
<td>penta</td>
<td>1.19 ± 0.04</td>
<td>1.24 ± 0.05</td>
</tr>
<tr>
<td>GlcN</td>
<td>< 0.1</td>
<td>< 0.1</td>
</tr>
<tr>
<td>α-Me-Glc</td>
<td>Not detectable</td>
<td>Not detectable</td>
</tr>
<tr>
<td>β-Me-Glc</td>
<td>< 0.1</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Gal</td>
<td>Not detectable</td>
<td>Not detectable</td>
</tr>
<tr>
<td>GalNAc</td>
<td>Not detectable</td>
<td>Not detectable</td>
</tr>
</tbody>
</table>
Type 1 Pili

- **Tip fibrillum** (flexible)
- **Adapter**
- **Pilus rod** (rigid)
- **Outer membrane**
- **Usher**
- **Chaperone**

fim operon

Found in human uropathogenic *Escherichia coli* (UPEC) strains

FimH adhesin has a basic specificity for mannose
FimH Recognizes Terminal Mannose Residues
A Serendipitous Ligand Reveals Remarkable Affinities
A Competition Assay for Affinity Measurements

Immobilized antibody targeting the FimH binding site

Carbohydrate ligands interfere with antibody binding, preventing the binding of FimH to the chip
<table>
<thead>
<tr>
<th>Ligand</th>
<th>K_d</th>
<th>ΔG° (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mannose</td>
<td>2.3 µM</td>
<td>-7.6</td>
</tr>
<tr>
<td>methyl 2-deoxy-(\alpha)-D-mannopyranoside</td>
<td>300 µM</td>
<td>-4.8</td>
</tr>
<tr>
<td>glucose</td>
<td>9.24 mM</td>
<td>-2.8</td>
</tr>
<tr>
<td>galactose</td>
<td>100 mM</td>
<td>-1.4</td>
</tr>
<tr>
<td>fructose</td>
<td>31 µM</td>
<td>-6.1</td>
</tr>
<tr>
<td>sucrose</td>
<td>12.8 mM</td>
<td>-2.6</td>
</tr>
<tr>
<td>turanose</td>
<td>7.6 mM</td>
<td>-2.9</td>
</tr>
</tbody>
</table>
Fructose, present for about 5% in fruit juices, inhibits type 1 fimbrial adherence.
Inhibitor Design

Alkyl mannose derivatives

- Methylmannose (Man-C$_1$)
- Butylmannose (Man-C$_4$)
- Octylmannose (Man-C$_8$)

Aromatic substituents

- Methylumbelliferylmannose (MU-Man)
- Paranitrophenylmannose (PNP-Man)
<table>
<thead>
<tr>
<th>Ligand</th>
<th>K_d SPR (nM)</th>
<th>ΔG° SPR (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mannose</td>
<td>2.3 10^3</td>
<td>-7.6</td>
</tr>
<tr>
<td>methylαman</td>
<td>2.2 10^3</td>
<td>-7.7</td>
</tr>
<tr>
<td>ethylαman</td>
<td>1.2 10^3</td>
<td>-8.1</td>
</tr>
<tr>
<td>propylαman</td>
<td>300</td>
<td>-8.9</td>
</tr>
<tr>
<td>butylαman</td>
<td>151</td>
<td>-9.3</td>
</tr>
<tr>
<td>pentylαman</td>
<td>25</td>
<td>-10.4</td>
</tr>
<tr>
<td>hexylαman</td>
<td>10</td>
<td>-10.9</td>
</tr>
<tr>
<td>heptylαman</td>
<td>5</td>
<td>-11.3</td>
</tr>
<tr>
<td>octylαman</td>
<td>22</td>
<td>-10.4</td>
</tr>
<tr>
<td>pNPαMan</td>
<td>44</td>
<td>-10.0</td>
</tr>
<tr>
<td>MeUmbαMan</td>
<td>20</td>
<td>-10.5</td>
</tr>
</tbody>
</table>
A Linear Correlation Between Alkyl Chain Length and Energy

\[\Delta G \text{ (kcal/mol)} \]

\[\text{number of carbon atoms} \]

Slope: -0.64 ± 0.03
Correlation: -0.99 ± 0.18
Docking Energy Histograms

![Docking Energy Histograms](image)
Future Directions

Target tissue
- Recovery and digestion of glycoconjugates

Glycoprotein mix
- Treatment with proteases and glycosidases

Mixture of fragments
- Selection with lectin/adhesin

Binding fragments
- Mass spectrometry and database search

Identification
Integration

Structure

Thermodynamics

A + B \xrightleftharpoons{K_a} AB

K_a = \frac{[AB]_{eq}}{[A]_{eq} \cdot [B]_{eq}}

\Delta G = -RT \ln(K_a)

\Delta G = \Delta H - T \Delta S

Experiments

BiaCore

ITC, DSC

Spectroscopic titrations

Docking

Structure determination

Crystallography

NMR
K88 Fimbriae

D

G

?

outer membrane

Usher

E

Chaperone
Conclusions
Conclusions

- **X-ray crystallography** reveals the structures of adhesins and their interactions with carbohydrate receptors in atomic detail
- **Surface plasmon resonance** measurements now enables the detection of the binding of mono- and oligosaccharides, using comparatively small amounts of protein and ligand
- Analysis of the combined data from these techniques provides insights in the **specificity profiles** of the adhesins, forming the basis for the design of novel **adhesion inhibitors**
Acknowledgements

Ultrastructure Laboratory
Lode Wyns
Remy Loris
Julie Bouckaert
Henri De Greve
Erwin De Genst
Joris Messens

Inge Van Molle
Adinda Wellens

Fanny Coppens
Mike Sleutel
Lieve Cools
Peter Bastaerts

Stockholm/Goteborg
Stefan Oscarson
Martina Lahman
Rikard Slättegård

Uppsala
Stefan Knight
Jenny Berglund
Anton Zavialov
Deva Choudhury

Organic Synthesis
Kourosh Abbaspour Therani

St. Louis
Chia Hung
Scott Hultgren

Medimmune
Solomon Langermann

Leiden
Manfred Wuhrer
André Deelder